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SECTION I
INTRODUCTION

The following investigation deals with constitutive relations
employing generalized derivatives that relate stress and strain in
viscoelastic materials, and the solution techniques for the resulting
equations of motion for structures incorporating viscoelastic components
to damp vibratory motion. The use of generalized derivatives of
fractional order in stress-strain constitutive relations, first suggested
by Caputo (Reference 1), may be viewed as an extension of the standard
model for a linear, viscoelastic material.

The standard viscoelastic model for a uniaxial constitutive relation
is (Reference 2)

o(t) + § b (1k° = E e(t) + % E éj-i (1)
ki1 K ek © j=1 1 a¢/

The viscoelastic constitutive relation employing generalized derivatives
of fractional order will be taken to be

K &

» a.
o(t) + ] bD “[o(t)] = Eje(t) + LD e (2)
k=1 :

J
L

j=1

where the generalized derivative operator of real order o is defined by

t
D*x ()] = f’(i—-l‘&Tfl— 20 gr 0 <a <1 (3)

“o (t-1)°¢

The generalized derivative constitutive relation (Equation 2) may be
viewed as an extension of the standard model (Equation 1) in the sense
that the derivatives are no longer limited to being of integer order.
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The use of this generalized derivative constitutive relation in
modeling the response of viscoelastic materials will be seen to have
several advantages over present methods. The major drawback of the
standard viscoelastic model (Equation 1) is that a large number of terms
are often required to describe a material adequately. The use of
derivatives of other than integer order in the constitutive relation will

be seen to produce satisfactory models with very few parameters.*

Because of the large number of terms required, the standard model
(Equation 1) often becomes too cumbersome to manipulate. Consequently,
an alternative known as the "complex modulus method" has been developed.
In the complex modulus method, measured values of E*(w) (Equation 4) are i
used as a discrete approximation of the function E*(w). In the transform
domain, the general viscoelastic constitutive relation is ;

o*(w) = E*(w)e*(u) (4) |

E*(w) is measured for different frequencies of motion (Reference 4), Wy s
which produces a set of discrete values of the modulus, E*(wi), over the
freguency range of interest. These discrete values of E*(w) are sub-
stituted into the transformed equations of motion of a viscoelastic
material to produce values of the transform of the response at discrete
frequencies. The inverse transform of the response is evaluated
numerically to produce the time history. The major drawback of this
method is the arduous task of calculating the inverse transform for every
point in time at which the value of the response is required. The use of
the generalized derivative constitutive relation will do away with the

need for numerical approximations in the frequency domain.

An elementary form of the "complex modulus" method, obtained by
representing the transform of the modulus by

E¥(w) = Eo(l + insgn(w)) (5)

*In Section V, a generalized derivative constitutive relation for the
elastomer 3M-467 is presented. The relation characterizes the material's
properties over four decades of frequency with three parameters.

PORET T iz bk
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sgn(m) = 0, w=20 (6)

and often known as "structural damping" (Reference 5), is valid only

for sinusoidal stress and strain in the material. Crandall has shown
that the response of a harmonic osciilator with "structural damping"

for impulsive loading is non-causal (Reference 6); that is, the time

response of the oscillator occurs before the loading.

Milne (Reference 7) has proposed several modifications of the
imaginary part of the modulus given in Equation 7 to produce a causal
response. Unfortunately, neither the modified modulus nor the one given
in Equation 7 is particularly suitable for transient (broad-band) response
of viscoelastic materials, because they do not account for the frequency-
dependent stiffness typically encountered. Caputo (Reference 8) observed
that a single term, generalized derivative, constitutive relation of
the form

*1
o(t) = ElD [e(t)] 0 < ay < 1 (7)

produces frequency-dependent stiffness and damping and a Toss factor¥,
n, that is frequency independent.

0.1'"

(8)

n = tan

Caputo's work with generalized derivative constitutive relations
focuses primarily on the propagation of waves in geological formations.
One of Caputo's earliest papers (Reference 9) was on generalized
independent loss factors or equivalently frequency-independent resonant
qualities, Q. This work was followed by a book (Reference 10) in which
Caputo dealt with the propagation of impulsive plane waves and the

*The loss factor in a linear material is the ratio of imaginary to the
real part of the modulus.
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free vibration of spherical strata using generalized derivatives in the
constitutive relations of the media. In the last chapter of the book

and in later papers with Minardi, Caputo compares the generalized
derivative relations with experimental observations of the properties

of some media: "some metals, glasses and the earth." (References 11, 12)
In 1974 Caputo proposed a generalized derivatives viscoelastic con-
stitutive relation of the form (Reference 13)

o(t) = nDa+n[c(t)] R 0 < a<l ;n=20,1,2,... (9)

where the generalized derivative operator was defined by

ta'x) 1 dt

O dg™ (t'T)a

Da+n[X(t)] = —I-IT&-T (]0)

This definition differs slightly from the generalized derivative used

in this investigation (Equation 3). Caputo used the relation (Equation 9)
to determine the response of a uniformly driven infinite viscoelastic
layer and investigated the hysteresis behavior of the constitutive
relation (References 14, 15). Recently, Caputo suggested, but gave no
application for, a constitutive relation of the form (Reference 16)

pPlo(t)] = nD%[e(t)] (11)

which is the harbinger of the general constitutive relation (Equation 2)
which is to be used in this study.

A1l of Caputo's work rests on a continuum formulation of the equations
of motion. Unfortunately, a continuum formulation of the equations of
motion for many structures of engineering interest is not practical. As
a result, a discrete formulatior of the equations of motion is adopted,
based on assumed displacement, finite-element methods. A solution
technique developed for the motion of structures incorporating visco-
elastic materials modeled with generalized derivatives is developed as an
extension of the solution technique developed by Foss for non-proportional :
viscous damping (Reference 17). i
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In the sections to follow, constitutive relations using generalized
derivatives are developed, and their applications and 1imitations are
considered. Some experimental results are presented and found to show
that a constitutive relation, with parameters determined from the
response to sinusoidal loading, predicts very well the response of one
typical elastomeric material to an impact loading. Finally, the
formulation of multi-degree of freedom systems, necessary for large-
scale structural analysis, is considered. Special solution methods,
necessary for such applications, are developed.

T R A WA MW 7, )
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| SECTION I1I
A BRIEF OVERVIEW OF GENERALIZED DERIVATIVES
Before construction of generalized derivative constitutive relations,
it is appropriate to introduce the properties of generalized derivatives
relevant to the following investigations. Of particular interest are the

form of the Laplace and Fourier transforms of generalized derivatives,
and the results of repeated differentiation of fractional order.

First and foremost, the generalized derivative is a linear operator.
D*[x, (t) + x, ()] = D¥[x;(£)] + D¥[x,(t)] (12)
This property follows directly from the definition (Equation 3)

t ...
Do[x(t)] = FTf%ET é% é Ef§i%z dt (3)

To put the definition into a form in which the calculation of its
Laplace transform is straightforward, one first performs a change of

variable
T = t-n (13)
which results in
DY [x(t)] = 1 d ft x(t-n) 4, (14)
T(l-a) a_t—o na

Using Leibnitz's rule to differentiate the integral produces

t
PIx] = rmey [ & s X 4 e g (9)

et SRS e nii S
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After taking the Laplace transform of Equation 14, the transform of the
generalized derivative f order a of the function x(t) is seen to be

LD°Ix(0)]] = —b— + GLIx()] - x(0)) « U (g

S

7

which simplifies to

LID®Ix(t)]] = s%L{x()] (17)

where

Llx(t)] = x(t)e St 4t (18)
0

Notice that the Laplace transform of a generalized derivative of order o

of a function is equal to s” times the transform of the function.

Under certain conditions a similar property of generalized derivatives
js true for Fourier transforms.

FID[x(t)]] = (iw)® F[x(t)] (19)

where

[-5

[ x(t)e ¢t at (20)

-

"

F[x(t)]

The conditions are, first, that
x(t) = 0 fort <20 (21)

in which case the Fourier transform becomes

FIx(t)] = [ x(t)e 0% gt (22)
(o]

and, second, that the integral in Equation 22 exists. Note the parallel
form of Equations 17 and 19. Both relations were used by Caputo
(Reference 18).

|
1
1
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A useful property of generalized derivatives is that the generalized
derivative of order ays of the generalized derivatives of order o, of a
function is the generalized derivative of order ap + a, of the function.
Again using operator notation, the property is

010 2[x(t)1] = D1 2[x(t)] (23)

Notice that the definition of generalized differentiation given in
Equation 3 is restricted to fractional order a less than one. If a is
one or greater in Equation 3, the integral contains a non-integrable
singularity*. The definition of a generalized derivative of order B,
where B, where 8 > 1 and B = m + o where m is the largest integer not
exceedfng B, is

1 a™l vt
r(l-a dtm+1 o (t-'r)u

D™ [x(t)] dt (24)

*On the other hand, if o is zero in Equation 3, the relation is clearly
valid and follows from the fundamental theorem of calculus.

Rascnend o o A e ame
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SECTION III
THE BASIC GENERALIZED CONSTITUTIVE RELATION

In this section, the basic generalized derivative, viscoelastic
constitutive relation is presented and some aspects of its behavior are
established. The basic generalized derivative constitutive relation is

o(t) = aAD%*e(t)] 0 < a <1 (25)
or
v 4t e
a(t) = T3y It é E:T;;E dv (26)

Since the generalized derivative is a linear operator, this relation
is suitable only for the linear approximation of a material's properties.
This Tinear constitutive relation satisfies many of the presently accepted
constraints on viscoelastic constitutive relations.

In particular, it represents a material with fading memory. To
demonstrate this claim, it is necessary to put the constitutive relation
in a different form using a change in variable.

n = t-t (27)

and again using Leibnitz's rule to differentiate the resulting integral
produces

t
o(t) = . {a g j: g% e(t-1) dr + re(0) (28)

T r(1-«)t®

or

t

o(t) = [ G(1)e(t-t)dr + G(t)e(0) (29)

(o}

where
A
G(t) = —— (30)
r(l-«)t




AFML-TR-79-4103

The constitutive relation, (Equation 29), represents a viscoelastic
material with a fading memory. A material is said to have a fading
memory if its relaxation modulus, G(t), goes to zero monotonically as t
increases (Reference 20). Notice that G(t) in Equation 30 does in fact
go to zero monotonically.

Since the material has a memory, the value of the stress at time t
js dependent on the entire strain history until time t. To ensure that
the constitutive relation produces a stress that is dependent on the
entire strain history until t, time zero must be chosen before or at the
onset of the initial strain.

Consequently,

e(t) = 0 for t <O (31)
and the only way that
e(0) # 0 (32)

is if the strain history is discontinuous at t = 0. According to
Gurtin and Sternberg (Reference 21), the constitutive relation as shown
in Equation 29 is in the correct form to handle discontinuous strain
histories. Notice that a step discontinuity in the strain history at

t = 0 produces a stress history* that is singular at t = 0.

When the strain history is a continuous function of time, and zero
for negative times, the constitutive relation given in Equation 29 reduces
to

. t A
o(t) = [ G(t)e(t-1)dr , G(t) = —— (33)
o rl-a)t

This relation satisfies three out of four of Pipkin's restrictions on
viscoelastic constitutive relations (Reference 22). The first restriction,
that the stress be an odd functional of strain rate, is satisfied.

*The Voigt viscoelastic model displays this same property.

10
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The second restriction, that G(t) go to zero as time increases, is also
satisfied, which is in keeping with the fading memory property. The third
restriction, also satisfied, is that the kernel, the relaxation modulus
G(t), be a function and not a distribution. Pipkin's fourth restriction,
not satisfied by the generalized derivative constitutive relation, is

that G(t) be of negative exponential order.

1

P PT T
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SECTION IV

GENERALIZED DERIVATIVE CONSTITUTIVE
RELATIONS FOR VISCOELASTIC MATERIALS

The task at hand is to use the basic generalized derivative con-
stitutive relation just presented as the building block for constitutive
relations that model the frequency-dependent moduli of viscoelastic
materials. The moduli of viscoelastic materials are complex numbers T
where the real ana imaginary parts are functions of the frequency of
motion.

A5 (w) = A7 (w) + 1ix""(w) (34)
¥ (w) = pi(w) + in""(w) (35)

The moduli are defined as the transforms that relate the transforms of
stress and strain

o%n(w) = Gmnx*(w)e*(w) + Zu*(m)cén(u) (36)

where Son is the Kronecker delta and e*(w) is the transform of the
dilatation strain

e*(w) = C{l(m) + e%z(w) + c§3(“) (37)

A useful property of the moduli is that their values at frequency Wy )
relate sinusoidal stress and strain of frequency W, in the material.

omn(t) = Gmnx*(wo)eoexp[imot] + 2“*(“o)€mnoexP[i“ot](38)

Consequently, one can measure the values of u*(w) and A*(w) at discrete
frequencies of sinusoidal motion. As a result, the frequency dependence
of the moduli can be determined experimentally.

Typically, a viscoelastic material at constant, uniform temperature
has moduli that vary with the frequency of motion as indicated in

12
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Figure 1 (Reference 23). At low frequencies (the rubbery region) the
real part of the modulus is relatively constant, while the imaginary

part of the modulus increases with increasing frequency. At intermediate
frequencies (the transition region) both the real and imaginary parts of
the modulus increase with increasing freguency and the rate of increase
of the real part slowly overtakes the rate of increase of the imaginary
part. At high frequencies (the glassy region) the imaginary part of the
modulus decreases with increasing frequency, and the real part of the
modulus is relatively constant.

The generalized derivative constitutive relations presented here are
of two types. The first type are those relations intended to model the
viscoelastic behavior of the material in the rubbery and transition
regions. For brevity, this type of model is referred to as the RT model.
The second type are those relations intended to model the behavior of
the material in the rubbery, transition and glassy regions. This type of
relation is referred to as the RTG model. Since the RTG model may be
viewed as a generalization of the RT model, the RT model is considered

first.

The RT model for an isotropic, homogeneous, linear viscoelastic
material is

J a.
= j
o n(t) 8.0 (X +j£1ij Je(t)

L Py

+ 2 (g v I owD Me o (t) (39)
=1
where

0 < q,j < 1 (40)

13
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O<a <1 (4])

e(t) = ell(t) + ezz(t) + CSS(t) (42)

Note that the RT model portrays the stress as a combination of elastic
stresses, proportional to the positive, real parameters xo and Hyo and
viscoelastic stresses, proportional to the positive, real parameters Aj
and ..

To establish the frequency dependence of the moduli in the RT model,
one takes the Fourier transform of the constitutive relation.

* J .
omn(w) = Gmn(ko + z Xj(lw) ) e*(w)
j=1 i
L S
© gt Ly G0 ) o) (43)

. J a. ij
A ((1)) = ()\o + z A-w JCOS—Z———)
i=1
J a. Ta .
O O (44)
j=1 J
L a Na
* _ L 2
wo(w) = (e 221u2w cos — )
L &, T,
+ i ) wow sin —— (45)
=1 -
15




T m——

AFML-TR-79-4103

Observe that for low frequencies of motion, defined by

1 J o
-):—— .Z )\jw J << 1 (46)
o j=1
and
1 S ;i‘,
"N -Zluiw << 1 (47)
0 1=

the moduli in the RT model, (Equations 44, 45), have essentially a
constant real part and an imaginary part that increases with increasing
frequency, similar to the properties of a viscoelastic material observed
in the rubbery region (Figure 1).

At intermediate frequencies of motion, defined by

J a.
%- Yorswd T 1 (48)
o j=1 J

and

R
LT ww 1
Ho ¢=1

the real and imaginary parts of the moduli in the RT model are increasing
with frequency, similar to the properties of a viscoelastic material
observed in the transition region.

It is evident that the RT model does not properly account for the
properties of a viscoelastic material at high frequencies, defined by

J
Loy 20’ >> 1 (50)

Ao j=1
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and

Lo
Z u wai', l >> 1 . (51)

The real and imaginary parts of the modulus are predicted by the T model
to increase indefinitely with frequency. In the glassy region, however,
the real part of the modulus of viscoelastic materials is typically
constant {Figure 1), and the imaginary part is decreasing with increasing
frequency. This discrepancy motivates the construction of a more complex
model which accounts for material properties in the glassy region, the
RTG model.

The RTG model for an isotropic, homogeneous, linear, viscoelastic
material is defined to be

-

P8
é pr ) cmn(t)

K By
(1 + 7% a0 ") Q-+
k=1 1

P

p ép J
=68 . Q1 +p§ pr ) (xo +j2

o
A0 1y e(t)

1 1

K
+2 1+ ] apb
k=1

B
k b, D %) e (t) (52)

Again, the frequency dependence of the moduli in the model is observed
by taking the Fourier transform of the constitutive relation. After
some algebraic manipulation of the transformed relation, the result is

J a.
. (g + ) A; (ie) 3 .
o (W) = 8 I F— ¢ (W
(1 + ] a (iw) )
k=1
17
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~

a

L 2
2 (uo + ) ul(iw) )
+ — e (0
P 8 mn
(1 + )b (iw) P)
p=1 P
where
J ) aj
. (r, +'£1Aj(1w) )
A (w) = J
P Bk
(1 + 7§ b (iw) ™)
p:l p
L &l
b+ ) w,(iw) ™)
* 0 2:1 4
u (w) = T :
(1+ 73 b _(iw) P)
p=1 P
0 < aj,ag’,Bk,Bp <1
and
A LA > 0

o’ j,uoyuu,ak:bp

If the parameters a and bp are chosen to be small, such that

K Bk J a.
I a (iw) << Ao+ I A (w) ]
= j:l J
and
P B L
I b, (iw) P << ug * 1w, (iw)
p=1 2=1

(53)

(54)

(55)

(57)

(58)

(59)
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for frequencies in the rubbery and transition regions of the material,
the RTG model behaves like the RT model in the rubbery and transition
regions of the material.

It is, however, the presence of the terms ay and bp which enables
the RTG model to account for the properties of viscoelastic materials
at high frequencies; i.e., in the glassy region. Note that, if the
largest values of S and B, are the same, and if the largest values &Q
and ép are the same, then at high frequencies A*{w) and u*(w) have real
parts that become constant and imaginary parts that decrease with
increasing frequencies, as is characteristic of a viscoelastic material

in the glassy region.

An important property of the RT and RTG models is that they satisfy
the "elastic-viscoelastic correspondence principle."” (Reference 4)
The correspondence principle states that the Laplace transform of the
stress response of a viscoelastic material can be constructed from the
Laplace transform of the response of an elastic material by replacing
the elastic constants, % and i:, in the elastic response by the Laplace
transforms of viscoelastic moduli, A*(s) and p*(s). The principle holds
when the transform of the elastic stress-strain constitutive relation

*
mn

* _ *
omn(s) Gmnxe (s) + 2ue

(s) (60)

can be used to construct the transform of the viscoelastic stress-strain
constitutive relation by replacing the elastic constants with the
transforms of the viscoelastic moduli. Thus, the viscoelastic constitutive
relation must be of the form

L3

onn(s) = spaF(s)et(s) ¢ 2uT(s)epi(s) . ()
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The Laplace transforms of the RT and the RTG models are of the
general form given in Equation 61. The Laplace transform of the RTG

model is
J aj
X
. (Ao +j£1 ;S ) .
‘m(s) = &g X 3 e (s)
(1+ 7 a,s k)
k=1
L 2
2(ug * L ougs )
2=1 *
+ P 6 Cmn(s) (62)
(1+YbsP
p:l p
and the Laplace transform of the RT model is
J o.
* = ] *
1 on (8) 8.0 (A +izlkjs ) e (s)
L
* 02 (ng ¥ z us ) ex (s) (63)
: =1
Another important property of the RT and RTG models js that they can
be constructed to be causal in the sense that the response {stress) does
not occur before the input (strain). The stress response is zero for
negative time if its Laplace transform is analytic in the right half s
plane. This condition on the transform of the stress is met, for the

| class of strain histories having transforms that are analytic in the
right half s plane, when the branch cuts of saj, sal, sBk and sBP are
along the negative, real s axis, and u*(s) and A*(s) have no zeros in
the right half s plane. Since the stress is zero for negative time,

the stress cannot anticipate the strain that begins at time zero.

Laplace transforms are also useful in determining the hysteresis
predicted by the RT and RTG models. For a sinusoidal strain history

20
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of frequency wy starting at time zero, the transform of the stress history
i is

emn(t) = emn051nw0t (64)

7]
* * # o

o (s} = (& (s)e +  2u(s)e ) (65)
mn mn [e] mno 52+w§

Evaluating the inverse transform in the same manner as in Section X, the
stress time history is found to be

- 1 % . * . iu}t
omn(t) T [(émnx (1mo)eo + 2u (lwo)emno) e o

: PR %0 -iw t
(amnx ( 1w0)e0 + 2u*( mo)smno) e "o ]

1 ® * ~im * -im
+ In [77 f (GmnA (re e + 2u*(re ) mn )
| 3 o 0
woe-rt
2 4r (66)
& w§+r2

As time increases, the integral term in Equation 66 goes to zero and
the sinusoidal terms dominate the stress time history. So, for a

sinusoidal strain history, the stress eventually becomes sinysoidal
as well.

Using Euler's formula, numerous trigonometric manipulations, and
the observation that the two sinusoidal terms are conjugates, the stress
for large time may be evaluated as components in-phase with the strain,
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proportional to sinwot, and components out-of-phase, proportional to

coswot. The resulting expression for the stress using the RTG model is
- @ ﬂa-
omn(t) = 1 8mColy (g) |35 * 2 meo Jeos T
t>>0
K By J K a.+8
8 j k w
+ 2 w_ cos "k I I raw oS (0. -8y )
O k=1 %0© 5 * ik K 7
9 ma, 8 B
+ (w ) o Z u (A) COS—2-— + ]J Z b w pCOST
+ z Xubm Peos—a- (a B)] sine t
=1 p=1 pPPO z
g aj waj
+ \ mneodl(w ) AO jélA W Sln—zh
IX< T\'Sk \% g a +B
+ 2 w_ si + Aapw Sin—= (o.-By.)
ok=1ak o S 391 ke 5% 7 Bk

cosw_t
[o]

) Dot ( _B)]
221 pzlu nTe

(67)
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! where
X . By -1
Al(mc) 1 + kélak'(lwo) (68)
and
P 8 -1
8, (w,) = 1+ lebp-(iwo) p (69)

A more compact form of the expression for the stress is

o _(t)

mn

émnFl(mo)e051nwot + Fz(wo)emn051nmot
t>>0

8 (mo)eocoswot + F4(w0)emn cosu t (70)

F
mn 3 o
Under conditions of uniaxial stress and strain, Equations 64 and 70 may
be recognized as the parametric equations of an ellipse; thus, it is
clear that the RTG model predicts the existence of a hysteresis loop and

the loop is elliptical.

The loss factor associated with the hysteresis loop, the ratio of
the energy dissipated during a cycle, D, to the peak strain energy
stored during a cycle, Umax’ is a parameter often used to characterize
the ability of viscoelastic materials to damp vibratory motion.

(71)

%

The energy dissipated per cycle is

n=1 m=}

303 [a, _
D = ) ) omn(t)cmn(t) dt (72)
[o]
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where %ﬂ is the period of the motion. Using Equations 64 and 70 to
0
evaluate dissipated energy yields

3 3

D = 7 F,(w)e? + ) Y F,(w )e?2 (73)
3* 70’70 ns1 mey 407 mng

The peak energy stored during a cycle is

€ =g 2w
5 3 ~mn M (ax) ;3 "o
Upax = I [ O Y€pn T L. L °mn€mndt(74)
- - n=1 m=1
n=1 m=1
e =0 o

where G are the stresses in-phase with their respective strains, ¢

mn mn
0
sinwot. Again using Equations 65 and 66, the peak energy stored during
a cycle is 1
! i}
U = F,(w )e? + Fo(w )e2 (75)
max 7 1%’ n=1 me1 2007 mng

The resulting loss factor is seen to be

3 3
2 2
F3(“’o)eo * Z Z F4(°’o)emn
= n=1 m=1 o
n = 3 ki (76)
2 2
Filugdeg nzl mlez(mo)emno

+

Notice that the form of the expressions for the hysteresis behavior
and loss factor of the RT model is identical to that of the RTG model. i
This follows from the observation that the RT model is a special case of ;
the RTG model for bk =0, k=1,2, ..., K, and bp =0, p=1,2, ...,
P.
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In summary, RT and RTG models satisfy the elastic viscoelastic
correspondence principle. Conditions necessary to ensure that the stress
does not anticipate the strain have been developed. In addition, both
models predict the existence of stress-strain hysteresis effects and the
resulting hysteresis loops are elliptical. Most significantly, the models
predict moduli which have the same frequency dependence as is observed
in frequency-dependent moduli in typical viscoelastic materials.*

The outstanding question is whether or not the parameters of the RT
and RTG models can be chosen to describe accurately the properties of
a particular viscoelastic material. The construction of the RT model
for the elastomer 3M-467 is the topic of the following section.

*In addition, a generalized derivative constitutive relation occurs
in Newtonian, viscous fluids as demonstrated in Appendix B.

25

P Y Y -




AFML-TR-79-4103

SECTION V
THE RT MODEL FOR THE ELASTOMER 3M-467*

The first material examined for the possible application of generalized
derivative constitutive relations was the adhesive tape 3M-467. The tape
was chosen as a prime candidate because of its viscoelastic mechanical
properties, its linear response in shear for engineering shear strains
up to 1, its growing applications in mechanical damping, and the fact
that sufficient data on its mechanical properties were available.

The proposed uniaxial shear RT model for 3M-467 is

~

a
opn(€) = 2 (ug *wD 1) e () , m#n (77)
where
u, = 1.0 1b/in2 (78)
w = 7.3 1b-sec* >°/in?2 (79)
and R
ay = .56 (80)

The parameters of the model, Hg» Hpo and &], are chosen so the
sinusoidal, steady-state response of the model closely approximates the
sinusoidal, steady-state response of the material observed experimentally.

For sinusoidal strain

e (t) = o (81)

*3M-467 is an adhesive produced by the Minnesota Mining and Manufacturing
Co., Inc., Minneapolis, Minnesota.
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the RT model generates stresses of the form

] ay
o, (t) = z (u, + ul(lw) )
t>>0

iwt
e

(82)

€
n
mO

for t large enough for the transients to have died out. The frequency-
dependent shear modulus, u{w), is seen to be

-

.3
plw) = vy * ul(lw) (83)
Figure 2 displays the good agreement between the experimentally observed
mechanical properties of 3M-467 at 75°F and the RT model using the values
of the parameters given above.*

The parameters of the RT model were determined in an iterative
manner. Initial guesses of the parameters were made, and the resulting
frequency dependent shear modulus was compared to the observed modulus.
Successive qguesses of the parameters were made to match the slopes and
asymptotes of the model to those of the observed properties until an
acceptable fit was obtained.

Although the parameters of the RT model are based on the sinusoidal
response of the material at 75°F, the model can be used for non-periodic
strain histories. To demonstrate the ability of the model to portray
accurately the behavior of the material when undergoing non-perijodic
motion, the response of the material as predicted by the RT model is
compared to the experimentally observed response of the material at 75°F.

In particular, the behavior of 3M-467 was observed when the material
was used as a viscoelastic spring in a simple oscillator undergoing

*The mechanical properties of 3M-467 were provided by the U.S. Air Force
Materials Laboratory, Wright-Patterson Air Force Base, Ohio.
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non-periodic. rotion.* The viscoelastic spring was two pads of 3M-467
that underwent shear stra‘n during the motion of the oscillator. Each
pad of 3M-467 was nade by laminating 2 mil layers of 3M-467. Air
entrapped between the layers of the pad was removed by pressing the
layers together with a 5 lb. weight for 48 hours.

The other two components of the oscillator are the mass and the
support structure (Figure 3). The mass for the oscillator is a metal
cube sandwiched between the two viscoelastic pads (Figure 4). Each pad
is attached to an aluminum brace. Both braces are glued to an aluminum

base which, in turn, is glued to a steel foundation as shown in Figure 3.

The specific objective of the experiment was to determine the
acceleration transfer function of the oscillator. The acceleration
transfer function is the ratio of the transform of the acceleration
time history to the transform of the input force history. The force
time history, measured by a Wilcoxon Z-11 impedance head, was sampled
at 2 x 104 measurements per second and all frequencies above 8 x 103 Hz
are filtered out. The mass of the oscillator was tapped with a
Wilcoxon Z-11 impedance head to produce impulsive loading. The force
time history measured by the impedance head and the resulting acceleration
time history, measured by an Endevco accelerometer, Model 2217, were
also sampled at 2 x 104 measurements per second where, as before, all
frequencies above 8 x 103 Hz were filtered out. The transforms of the
time histories were calculated using the "fast Fourier transform"
routines of the Hewlett Packard System 54518.

This experimentally determined transfer function is compared to the
analytically predicted transfer function based on the equations of motion
of the oscillator and the RT model for the viscoelastic pads. The force-
displacement relation for the two pads based on the RT model (Equation 77)
is -

2A

%
NORE N ECERETURS IO (84)

*A schematic of the viscoelastic spring appears in Figure 4.
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where A is an area of contact with the mass for each pad, § is the
thickness of the pad, fp(t) is the total force acting on the faces of

the pads in contact wiih the mass, and x{t) is the displacement of the
face of the pad in contact with the mass. This force displacement
relation is based on the assumption that the displacement in the pad
varies linearly between the support wall and the mass of the oscillator.*

The resulting equation of motion for the oscillator is

~

- 2A *
f(t) = mx(t) + = (u, + wD ") x(t) (85)

Taking the Fourier transform of the equations of motion and determining
the acceleration transfer function produces

-

[+3
. 1%
(i) X () . 1 L 2A (g * uy(iw) 1) @
® s (iw)? 6)

A comparison of the experimentally determined and analytically
predicted transfer functions for five oscillators with various masses
and viscoelastic spring stiffnesses is presented in Figures 5 through 14.%*
Each transfer function is displayed in terms of its magnitude and phase.
The agreement between the observed and predicted transfer functions is
very good.

For comparison, the calculated transfer function based on a Voigt
viscoelastic model of 3M-467

opn () = 2 Gioenn(6) + ugép (8)) , m#n  (87)

*A finite element analysis of the viscoelastic pad verifies this
assumption to be valid for the frequency range of the tests, 0 to

5 X 103 Hz.

**The relevant parameters for each of the five oscillators are given in
Table 1.
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is also given in Fiqgures 5 through 14. The parameters of the Voigt model,

o and Hys are chosen to match the properties of 3M-467 at ]03 Hz.

ug = 630 1b/in? (88)

T .113 1b-sec/in? (89)

Note that for some of the oscillators, the Voigt model and the RT
mode] botii generate transfer functions that agree reasonably well with
the observed transfer functions. However, for those oscillators having
the peak magnitude of acceleration response at higher frequencies,
(Figure 13 for example) the transfer function based on the RT model is
clearly in better agreement with the measured transfer function than the
transfer function’based on the Voigt model. In addition, the phase of the

observed transfer functions is consistently modeled more accurately by

the phase of the transfer functions calculated using the RT model. These
results follow directly from the fact that the RT model accounts for the
observed properties of 3M-467 over the entire frequency range of interest,

102 Hz to 5 x 103, whereas the Voigt model accounts for the observed 1
properties of 3M-467 only in the neighborhood of 103 Hz. This is
clearly seen by comparing Figures 2 and 15.

If one attempts to duplicate the results presented here, one should
be aware that the mechanical properties of 3M-467 are strongly dependent
on the water present in the material. Fiqure 16 shows the variation of
the real part of the modulus with relative humidity. Changes in the

jmaginary part of the modulus with relative humidity are roughly |
proportional to changes in the real part. Hence, the loss factor, the
ratio of imaginary part to real part of the modulus, is relatively
insensitive to changes in relative humidity, as seen in Figure 17.

The pads of 3M-467 used in this experiment were fabricated under
conditions of 40% relative humidity at room temperature. However, the
pads were kept covered during the time between fabrication and installation
into the test setup.
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In summary. the RT wmodel for 3M-467 is capable of accurately
predicting the non-pericdic response of the material over several decades
of frequency, and is superior to a Voigt model of the material.
Lonsequently, the Ri wodel having parameters based on the sinusoidal
Sleady motion of the material at numerous frequencies is capable of
rredicting the response of the material to impulse-like, short duration
loading. Therefure, one can conclude that the RT model can accurately
preaict the general response of the material within the frequency range

0T the model.
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SECTION VI

A FINITE ELEMENT FORMULATION
OF THE EQUATIONS OF MOTION

Having established that a very elementary formulation of the equation
of motion for an elastomer-damped oscillator produced excellent agreement
with experimental observation, it is appropriate at this point to put
forward the tools required in the analysis of more complicated structures
of engineering interest. In particular, the development focuses on the
analysis of structures having both elastic and viscoelastic components.

A continuum formulation of the equations of motion for such structures
is impractical because of the resulting complexity of the formulation
for most structures with complex geometry and varying material properties.
As a result, a finite element formulation of the equations of motion is
adopted.

The cornerstone of the finite element approach is the construction
of the stiffness matrices for each of the finite elements in the structure.
The stiffness matrices for the elastic finite elements of structure are
constructed in the normal fashion using assumed displacement methods or
assumed stress methods, etc.

The formulation of the stiffness matrices for the finite elements in
the viscoelastic components, however, is limited to those methods that
do not constrain the stresses in each finite element to be in equilibrium
with the forces at the nodes the element. The assumed stress method, in
particular, is based on this constraint (Reference 24). As a result,
the time dependence of the stresses in the element is predicated on time
dependence of the nodal forces. However, this contradicts the fundamental
nature of the generalized derivative models in which the time dependence
of the stresses is predicated on the time dependence of the strain
histories.
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Ceiewauanli, . iy ussumed displacement method is adopted to
cocouldle Lt fees: atrix of the viscoelastic finite element
(" fecence 2v»).  in an assumed displacement element, the displacements
vt the ereinent wie assumed functions of the nodal displacements.

The stirtness mats iz of the viscoelastic finite element is constructed
ooy the elastic visceelastic correspondence principle. The stiffness
sk tax is First fornuldated as though the material were elastic., The
SLittoness matiix is then separated into two matrices, one matrix containing
those elements proportional to the elastic constant A, and the other
watite containing those elements proportional to the elastic constant vu.

[k, = AlK1 + u[K "] (90)

AL this point the transforms of the moduli, u*(s) and A*(s), from either
the RT or the RTG models, are substituted in place of the elastic constants,
. and +. The result is the viscostiffness matrix of the finite element,
i (s
(K (01 = 2K+ w*(s)[K]7] (91)

S

o fi altle, the ciscostiffness matrix for a finite element in which the
e ceastitutive velation is used to model the material is

J a.
(g * _lejs 1)
Lhgta] = s (k]
(1 + kg a,s k)
=1
L aq,
g * Lugs M)
=1 .
+ E— [k 1 (92)
(1+ JbsP
p=1 p
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The viscostiffness matrix of the finite element relates the nodal

forces, {F(s)!, and nodal displacements, {X(s)}, as shown below

{(F(s)} = [K (s)] {X(s)} (93)

and the viscostiffness matrix of a viscoelastic structural component is
constructed from the viscostiffness matrices of the elements within the
component in the normal manner. The viscostiffness matrices of the R
viscoelastic structural components

{F(s)}, = [K(s)], {X(s)}, 1,2,3,...,R  (94)

and the stiffness matrices of the Q elastic structural components |
{F(s)}q = [K}q (X(s)}q q =1,2,3,...,Q  (95) ii

are used to construct the stiffness matrix of the total structure, again 8
in the normal manner. ;

The stiffness matrix of the total structures, [K(s)], and the mass
matrix of the total structure are now used to construct the Laplace
transform of the equations of motion of the structure

s2[M] {X(s)} + [K(s)] iX(s)} = ({F(s)} (96)

Since some of the elements in [K(s)] are functions of s, decoupling the
equations of motion, (Equation 96} to obtain solutions is more complicated
than decoupling the equations of motion of a completely elastic structure
where the stiffness matrix has constant elements. Finding solutions to
Equation 96 is the topic of the next section.
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SECTION VII
THE SOLUTION OF THE DISCRETE EQUATIONS OF MOTION

The task at hand is the solution of the equations of motion which
resulted from the finite element formulation (Equation 96). A form of
modal analysis is adopted where the mode shapes, eigenvectors, of the
equations of motion are used to construct an orthogonal transformation
of the variables that decouple the equations of motion. The decoupled
equations of motion are then used to determine the components of the
structure's response and a general form of the solution to the equations
of motion is derived.

Throughout this development, the viscoelastic components of the
structure are described by their respective RTG models. Since the RT
model is a simplified version of the RTG model, the method of solving
the equations of motion of a structure with viscoelastic components
described by RT models will be seen to he a special case of the following

solution technique.

The reason for developing a special solution technique for the

equations of motion

s2[M] {X(s)} + [XK(s)] {X(s)} = {F(s)} (97)

is that the normal method of decoupling the equations of motion, using
modal analysis to construct an orthogonal transformation that diagonalizes
the mass and stiffness matrices, is not applicable because the stiffness
matrix of the struclure, [K(s)], contains terms that are dependent on

the Laplace parameter, s.

The method of solution for Equation 97 is an extension of the method
proposed by Foss to decouple the equations of motion for a structure with
non-proportional viscous damping (Reference 26).

M) (kx(t)} + [C] {x(t)} + [K] {x(t)} {£(t)} (98)

52




AFML-TR-79-4103

Non-proportional damping occurs when the damping matrix [C] is not a
linear combination of the mass and stiffness matrices of the structure.

At present there is no general method of constructing an orthogonal
transformation for three, real, square, symmetric matrices when each
of the matrices is not a linear combination of the remaining two.
Consequently, Foss posed the equations of motion for non-proportional
damping in terms of two real, symmetric matrices.

| | 0 x 0
A et {4 e eeepeeo] {---b = {----1(100)
M| | X X f(t)

The Tower set of the partitioned matrix equations is the equations of
motion of the structure and the upper set of matrix equations is satisfied
identically. The equations of motion as posed in Equation 100 are readily
decoupled and solved.

To solve the equations of motion of the structure containing elastic
and viscoelastic comporents (Equation 96) the equations are posed in terms
of two real, square, symmetric matrices. To begin, one multiplies the
equations of motion by each distinct term appearing in the denominators
of the elements of the stiffness matrix, [K(s)],

"

[D(s)s?[M] + D(s)[K(s)]] {X(s)} D(s) {F(s)} (101)

where
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assuming that there are N different viscoelastic materials in the
structure. Multiplying D(s) times [K(s)], the stiffness matrix, produces
a matrix, [KD(s)], that has no terms in s appearing in the denominators
of its elements.

D(s) [K(s)] = [Kp(s)] (103)

In fact, all of the elements of [KD(S)] are constant terms plus terms
containing s raised to real, positive powers. Also note that the matrix
D(s)sZ[M] has elements which are sums of terms containing s raised to
real, positive powers.

The equations of motion are now expressed as

[2(s)] (X(s)} = D(s){F(s)} (104)

where

[2(s)] = [D(s)s2[M] + [Kp(s)]] (105)

At this point in the development, the real, positive exponents of s
appearing in the matrix [Z(s)] are taken to be rational as well. Had

any of the exponents been initially irrational, they are replaced by their
rational approximations to as many significant digits as desired. Since
all of the exponents in [Z(s)] are rational, the matrix may be expressed as

J j/m L
[2¢)] = [ M) c;s '™+ ] [K,]Is
j=2m £=1

] (106)

where m is the smallest common denominator of the exponents of s in
[Z(s)] and
J J
s2D(s) = I c.s /m (107)
j=2m J
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L
[Xp(s)] = ZO[KE]S (108)

where [KQ] is symmetric and some of the [Kz] and ¢; appearing above

may be zero.

Using Equation 106, the equations of motion of the structure become

J j/m L E/m
[ IMI L) egs "0+ 1 IKDs T01 {X(s)) = D(s)LF(s)} (109)
. N

j=Im

and expressed in terms of one index of summation, they are

J j/m
7L [M}cj + [Kj]]s {X(s)} = D(s){F(s)} (110)
i=0
or
J j/m
_ZO[Aj]s {X(s)} = D(s){F(s)} (1)
J=
where i
]
[AJ-] = [ [N]CJ- + [Kj] ] (112) @
{
and again recognizing that some of the cj and [Kj] are zero. i

The equations of motion as given in Equation 111 are now posed
in terms of two real, square, symmetric matrices.
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S

ZERO

AJ-l J-2

ZERO

J-1-

e g ST - WAL 5 e b bt e S o S T

56

o it Ko Ly o YRS

(21
s ™ (X(s)}
J-2
s ™ (X(s))
J-3
s™  (X(s)}

2/m (X(s))

S {X(s)}

o

L {X(s)}




AFML-TR-79-4103

\
r {0.} 1
{0.}
{0.}
n . A
= Y . N (113)
{0.}
{0.} j
D(s){F(s)} J
L

Note that each matrix [Aj], j=0,1,2,...,J, is real, square, and i
symmetric because they are linear combinations of [M] and [Kj]' It :
follows that the two matrices containing [Aj] in Equation 113 are also

real, square, and symmetric. Also notice that the lowest set of

partitioned matrix equations in Equation 113 are the equations of motion

of the structure as given by Equation 111, and that all of the upper sets

of matrix equations in Equation 113 are satisfied identically.

The equations of motion as posed in Equation 113, referred to as the
expanded eguations of motion, can be decoupled using an orthogonal
transformation. The general form of the expanded equations of motion is

s2[M1{X(s)} + [KJ{X(s)} = ({F(s)} (114)

which is Equation 113 expressed in more compact notation. The orthogonal
transformation is constructed from the eigenvectors associated with the
eigenvalue problem for the expanded equations of motion,

G IMIe )+ [KMe ) = {0.) (115)
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The eigenvectors (@n} are used to construct the orthogonal transformation
matrix [¢] in the normal fashion, and the resulting transformation of
variables is

(X(s)} = [elta(s)) (116)

Substituting this transformation into Equation 14 and premultiplying the
equation by [&]T produces

1 - . . .. - - -
s /M1t cacs)y + 87 LKIES) ats) = [81TeR(s)) (117)

To demonstrate that Equation 117 is, in fact, the decoupled expanded
equations of motion, one uses the fact that eigenvectors of the expanded
equations of motion are orthogonal with respect to [M] and [K].

(6.1 [MI{s.} = 0. j #n (118)
] n
= Teoq, T .
{6 }'[KI{e,3 = 0. j#n (119)
Equation 117 then reduces to
1/ o
s "PhmaYa(s)) o+ [Skedia(s)y = [el'(F(s)} (120)

where [‘~mn~\] and [“kns\] are diagonal matrices of the modal constants

My and kn’ respectively.

=
N

-~ T -~ -~
(o3 MIC 3 (121)

n

~ T - -~
k, (o3 [K]{¢n} (122)
Premultiplying Equation 120 by [“mn-\]“] or equivalently {“‘ﬁl~\] yields
n

Val~1Jta(s)} + [\513{3(5)} = 01 iE(s) ) (123)
s = mn‘ m

h th

The ratio of the nt
eigenvalue of the expanded equations of motion.

modal parameters, kn/mn’ is minus the n

k/m o= -y (124)
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Premultiplying Equation 115 by (¢n}T produces
A (o )TIMICe ) + {s }T[KI{¢ } = O (125)
n' 'n n n n
am. + k= 0 (126)
nn n

from which Equation 124 follows. As a result, the equations of motion
can be further simplified to

1 - - -
s Prgcacs)) - Baslaes)) = BEITEG)02)
n

From Equation 127 it follows that the expression for the Laplace

th

transform of the n~ modal coefficient, an(s), is

(o 1 (E(s))
an(S) = ————T7~—T—— (128)
mn(s m-xn)

This expression for the modal coefficient can be further simplified by
noting the general form of the eigenvector {$n} associated with the
expanded equations of motion

(6.} = ~ . " (129)
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where {¢n? and in are the solutions of the eigenvalue problem associated

with the original equations of motion in the form of Equation 111.

J .
. ~J = U =
[J_ZO[AJ]AHJMH} {0.} n=1,2,3,...,N (130)

The general form of the nth eigenvector, {¢,}, can be verified by direct

substitution in Equation 115 when [ﬁ] and [K] are expressed in terms of :
the matrices [Aj] as indicated in Equation 113. The lowest set of '
resulting partitioned matrix equations produces Equation 130, and the

upper sets of the partitioned matrix equations are satisfied identically. i

Consequently, the numerator of the nth modal coefficient, {¢n}T{E(s)}, is f
(. T [ b |
J-1
Ay (e} (0.}
~J-2
Ay Lo} {0.}
“J-3 .
Ap teg! {0.}
- T - N, . N n . n,
{¢n} {F(s)} = = . ' nooA . A~ (131)
An{¢n} {0.}
)\n{dbn} {0.1}
L {e,} J L D(s){F(s)} J

or

(o3 (F ()Y = (o} (R (5)ID(s) (132)
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and the nth modal coefficient reduces to |

to }T{F(s))ID(s) |
an(s) = - (133) :
n(s m-‘An)

The Laplace transform of the displacement response of the structures
follows from Equation 116 and takes the form
N

{X(s)} = nglan(s)wn} (134)

or

N e TR (s)ID(s)
{X(s)y = 7§ I o} (135)

n=1 Im >
mn(s m-kn)

where N is the order of the matrices [M] and [K] in the expanded equations
of motion.

The order of the expanded equations, N, can be very large. From
Equation 113 it is clear that the order of the expanded equations of
motion is equal to §, the order of the matrices [Aj], times J where J is

defined in Equation 107.
N = 6§ +J (136)

From Equation 107, it is clear that J/m js the largest exponent in the
expression sZD(s) which is 2 + B, where B is the largest exponent in

D(s). Therefore,
J = m(2+R) (137)

and the order of the expanded equations is seen to be

N = ém(2+8) (138)
Note that if m, the smallest common denominator of the rational exponents
of s, in the original equations of motion is large, the order of the

expanded equations is quite large for a structure with anything more than
a very modest number of degrees of freedom. However, the solutions to the
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expanded equations of motion can be obtained by using numerical methods
that do not involve the manipulation of the expanded equations, as will
be shown in the following section.

Before proceeding, it should be pointed out that the equations of
motion of a structure containing both elastic and viscoelastic components
can be solved given that a finite element formulation of the equations
of motion is possible and that an RT or RTG model exists for each
viscoelastic material in the structure. The general form of the solution
technique for the equations of motion containing only RT models for the
viscoelastic components is identical to the above development except that
D{s) is set equal to one.
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SECTION VIII

CALCULATING THE LAPLACE TRANSFORM
OF THE STRUCTURAL RESPONSE

At this point, it is clear that solutions to the equations of motion
for the structure containing elastic and viscoelastic components

N o )T{F(s)ID(s)
xX(s)y = ] A {o ) (135)
n=1 mn(s m-3)

are difficult to calculate from the expanded equations of motion, because
of the large order of the matrices in the expanded equations. As a
result, an alternative method of obtaining the solutions is required if
the finite element formulation of the equations of motion using
generalized derivative models is to be a useful tool to the engineer.

The alternative method adopted here is a combination of jterative
schemes used to obtain the eigenvalues, Xn’ and eigenvectors, {¢n},

associated with the original eguations of motion.

J .s
[.Zo[Aj]xg]{¢n} = (0.} , n=1,2,3,...,N (130
J=

Recall that the number of distinct homogeneous solutions to the equations
of motion, N, is dependent on the smallest common denominator of the
exponents in the equations of motion, m; the Targest exponent in the
product of the denominators terms of the Laplace transform of the RTG
models in the equations of motion, B; and the number of degrees of
freedom of the structure, &.

N = 6m(2+8) = 2Zmé + BmS (138)
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Using an iterative <cheme based on the homogeneous form of the

equations of motion in Equation 96, 25m of the homogeneous solutions
are obtained.

EPtM] + (KO Tte 1] = (0.} (139)

The iteratjon for the solutions centers on calculating successive
estimates of Xn and i¢n} using the scheme

2D g s kG Ph1ne 1 P = 0y (140)

iﬁp) is the pt" estimate of in' Xgm(P+]) is the (p + 1) estimate of
iim and {¢n}(P+]) is the (p + 1)th estimate of {¢n}.

2m
n and {@n} may be

calculated using matrix iteration or any other method that is appropriate
to obtain the solution to the eigenvalue problem

[B1(e} = wu{e} {(141)

Given a value of iﬁp), the (p + 1)th estimates of A

where B is complex. Note that Equation 140 can be expressed as
(P+1)  _ | 1
TZm
*n

3 (P+1)

xG P17 M, o7 (o, (142)

which is of the same general form as Equation 141.

The iterative scheme as it appears in Equation 142 is only useful in
obtaining the eigenvalue with the smallest magnitude, X], and the
associated eigenvector, {¢]}. To obtain the other eigenvalues and
eigenvectors, the iteration scheme is modified to allow the scheme

to converge on the larger eigenvalues and associated eigenvectors.
For instance, the scheme used to obtain the Lth eigenvalue, XL’ and

the Lth eigenvector, {¢L}, is {Reference 27)
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ORI~ bt &

T
tv,) Py ) @

2 (P+1)
1 Aim(p) [M]{¢L}

(D _ L
xahHrt . g
=

{o

o L1 , (P+1)
- PN L
iZm(P+1)
L

(143)

The terms in the summation on the index % subtract the components of
the first L - 1 eigenvectors, associated with eigenvalue problem,

[K(iﬁp))]'l[mliwl}(p) = - "YE%FT {wl}(p)z=1,2,3,...,L-1(144)
A
2

from the successive approximations of {¢L}(P+]) calculated when matrix
iteration is used to solve Equation 143.

Given that matrix iteration has successfully produced Xfm and

{¢L}(P+]), one can take advantage of the'orthogonality of the mode shapes

T
P ) o0l w12, ()
to demonstrate that

L {w,}(p)

T
. P) (P+1) _
) (v, 1P e, = {0.} 146
e=1 Aimipi £ L (146)
and Equation 143 reduces to
RGP o P = - oy D aa)
L
Thus, {¢L}(P+]) and Xfm(P+]) are in fact the (p + 1)th approximation of

the solution to the equations of motion.
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On the other hand, {wg}(P) and AQ(P), £ =1,2,...,L-1, are not in

any sense approximations of the solutions to the equations of motion.

However, they are the first L-1 eigenvalues and eigenvectors associated
with Equation 147. This can be seen by comparing Equation 144 with
Equation 147. {wg}(P) and AQ(P)

can be calculated using matrix jteration.

Notice that in continuing the iterative processes in Equation 140 or

143 the (P + Z)th approximations of the solution, Xﬁm(P+2) and {¢n}(P+2),

(P+1) 1/2m
branches. Given a value of Xim(P+])

5 (P+1)
n

are based on the value of Xn However, the function Z

has 2m
, one can calculate 2m values of

, one value for each branch of Z]/Zm.

So, when using Equations 140 and 143 to obtain solutions of the
equations of motion, it is necessary to choose one branch of Z]/2m to

calculate the &6 eigenvalues and & eigenvectors. Then another branch of ;

1 . . . . .
YA /2m is chosen and & other solutions are obtained. This process is

continued until all 2m branches have each been used to calculate §

solutions producing a total of 2m& homogeneous solutions to the equations

of motion. The general form of the equations that has thesc 2m$

homogeneous solutions is

+2m po - T
[xj(k)[m + [k(xj(k))]]wj(k)} = {0.} (148)

1/ 2m

where the subscript k denotes the branch of Z on which the relation

Zm )1/2m = 3

(5 x) = M)

(149)

is valid.
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The remaining 8m§ of the N homogeneous solutions to the equations
of motion are determined using Equation 138, an jterative scheme based

on the homogeneous form of Equation 109.*

J - L
; e
(o), i+ LIGIGy = 0 s

The iterative scheme is

J-1. .. (P)
+ ] XC.Ai )
j=2m J

. - (P)
[[M](ch£P+1)xi“1

[x, 10210 P = 0l (1s)

+
it~

2=0

or, in more compact form

(3G P Ry ke GPH 116 B = 0y is2)

where, as before, Xﬁp) is the Pth estimate of the eigenvalue, X(P+])

is the (P + 1)th estimate of the eigenvalue and {¢n}(P+]) is the (P+1)
estimate of the eigenvector. Given a value for XSP), one can calculate

i@n}(P+]) and Q(X£P+]), Xn(P)) using matrix iteration or any other method
suitable for the solution of Equation 141. Equation 152, expressed in

the form of Equation 141, is

th

[KD(iép))]'l[M]{¢n}(p*1) {¢n}(p+1) (153)

. 1
RS 25 DI ¢
QO g )

*Note that, if the equations of motion contain only RT models for the
viscoelastic materials, that D(s) is one and B, the largest exponent

of s in D(s), is zero. Hence, the total number of homogeneous solution,
N, is 2m5 as seen by Equation 138. Since Equations 140 and 143

provided 2m§ solutions, one can return to Equation 136 and calculate
structural responses.




AFML-TR-79-4103

G,

At this point, the numerical value of Q ap) from Equation 153

is used to calculate A(P 1) with the re]at1on

. @ I .
S TT A R e D B

P+1) (P))
J n n

QG

which follows from Equation 151 and 152. However, this method of

calculating A(P 1) assumes that k(P+]) are both on the principal branch
1/
of (ABm) B The method of calculating Aﬁp 1) assuming that A(P 1) and
Xgp, are both on the k' branch of (Aﬁm) 1/gm is
J am 1/Bm
QG 5B ) 5 (P
n(k) ’ n(k) J=1 ] n(k) ~(P 1)
D = ragk) (158)
n(k)
1
where the kth branch of Z /g is used to calculate x(?;;).
The resulting form of the iteration process is
(P) y1-1 (P+1)
[Xp G )17 Moy gy
= 1 (P+1)
G ONGIRIRTOL (156)
QA k), *n (k)
. . Y P+1) ~(P)

. ) 7 (P+1)
where successive.estimates of n(k) are calculated using Q(X n(k) An(k))
from Equation 156 and then using Equation 155 to calculate A(?k}). When

~(P+1) (P) (P+1) in

using matrix iteration to solve for Q(A n(k) * n(k)) and {¢ n(k )
Equation 156, one usually obtains only the Q with the smallest magnitude
and its associated eigenvector, {¢1(k)}'

To obtain successive estimates of the other Q's with larger
magnitudes and their associated eigenvectors, the iteration scheme
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is modified as before. The iterative scheme that yields Q(AE?:}) E?z))

and {¢L(k)} is

L-1 {y
O e A (L aM () [MICoy
2=1 Q(Al(k) Ay cry) (k)

- 1 (P+1)
= {4 } (157)
QG o) Lo

where Q(A(?k}), ((i)) and {wz(k)}( ) are the solutions to

, (P)

(P) 4p-1 ) .
Ky G 0, 001 P = S g (s8)

QA g (k) A (k)

1 smallest values of Q. The values of Q(AG(ET1>, g?i;

having the L
N i
and {¢2(k)}k ! can be obtained using matrix iteration.

3 Using Equations 155, 156, and 157, Bém homogeneous solutions to the
' equations of mot1on are obtained for each branch of Z BN Since there are
gm branches of Z /Bm’ the iteration process should produce Bm§ homogeneous
solutions. These homogeneous solutions satisfy the homogeneous equations
of motion

p=1,2,

. L ceesS
3 3¢ - ’
[[M]JE , ) 2Zo[xg]xp(k)]wp(k)} {0.} k=1’2’.'.’8m(159)

The two iterative schemes used to obtain the N solutions to the
homogeneous equations are considered to have converged when successive

5(P) 7(P+1)
approximations of An(k)( n(k) and X (k) ) are approximately the same

complex number. -(p+1)
n(k) -

; (P)
n(k)

= 1.0 (160)
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The general convergence criteria of the iterative schemes are considered
beyond the scope of this investigation; however, the schemes have converged
for numerous structures considered by the author. Homogeneous solutions
for an example problem, calculated using the iterative scheme given above
appear in Table 2.

Note that all of the parameters of the Laplace transform of the
structure's response are determined, except the modal constant m
defined by Equation 121. {

m, = {¢n}T[M]{¢n} (121)
The eigenvector of the expanded equations of motion, {6n}, can be
constructed from the nth eigenvalue and associated eigenvector of the
original equations of motion, Xn and {@n}, using the relation given in i
Equation 129. This, coupled with the general form of [M] given in
Equation 113, produces an expression for m. which takes the form

m. = {4 }T[

n A o]
n n

1-&2_1 A.11¢e )

J [N ™ °
2 1

L e 1}
o)
[
e

j=1

The modal constant of the expanded equations of motion, m.s can be
calculated without manipulating the expanded equations of motion.

In conclusion, ail of the parameters in the general form of the

Laplace transform of the structure's response can be calculated without
manipulating the expanded equations of motion, given that the iterative
schemes outlined above converge.
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TABLE 2

< HOMOGENEOUS SOLUTIONS OBTAINED USING
THE PROPOSED ITERATIVE SCHEMES FOR AN EXAMPLE PROBLEM

.3300 .0825
(M1 =
. 0825 .3300
: a
4.0 + 0.2 + 0.2s -2.0
[K(s)] = 1.0 + 0.1s™ .
- 2.0 4.0 + 0.01 + 0.01s

1.0 + 0.1s"

Using Equations 140 and 143

A

A(2)

*1.4)

*1(5)

‘2 (1)

‘2(2)

1.000 + 1 0.0

1.071768 .099794

+
[=n
—

{4 }
1(1) 1.040 + i 0.0165

1.000 + 1 0.0
= 1,073498 + i 1.028611 {¢1(7)} =
- 1.001 + i 0.0238

= 1.073498 - i 1.028611 {¢1(3)}
1,001 - i 0.0238
= 1.071768 - i 1.099794 {¢1(4)} =
1.040 - 1 0.0165
1.000 + 1 0.0
= 1,581998 + i 1.601989 {¢2(1)} = o
-.8713+ i 0.0120
1.000 + i 0.0
= -1.584631 + i 1.547150 {¢2(2)} ={
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TABLE 2 (Continued)

-1.584631 - i 1.547150

H

L}

1.581998 - i 1.601989

Using Equations 156, 157, and 158

-9,997418 + i 0.0

-9,99385

.000
.003

.000
.971

.000
.462

.000
L4438

[==]
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SECTION IX

THE EXISTENCE OF THE S1RUCTURAL
RESPONSE TO IMPULSIVE LOADING

0f particular interest at this juncture is whether or not the inverse
transform of the Laplace transform of the structure's displacement
response for impulsive loading exists. In fact, the inverse transform

I e Taih 7 TG e v

] always exists and is real, continuous, and causal.

To demonstrate this, one starts with the general form of the transform
of the structural response.

(e, 1 {F (s)ID(s)
1 17 - {¢n} (135)

m
"51(5 An)

{X(s)} =

nes12Z

n

= A g4 (5 A - S PAAL Y = ot T AT A 1 e 53

For simultaneous unit, impulsive loading at the structure's degrees of
freedom, the column vector of applied forces is

(£(t)} = 6(t){1.} , (161) "

where {1.} is a column vector of ones. The Laplace transform of the
column vector of forces is

{F(s)} = {1.} (162)
I and the transform of the response for the impulsive loading is
N T,
v - {6_} {1.1D(s)
{X(s)} = n
a1 7 ¢} (163)

m
mn(s An)

The inverse transform of this expression always exists, which follows

from a theorem on the existence of the inverse transform (Reference 28).
Paraphrasing the theorem in terms of the notation used above; it states
that the inverse transform of {i(s)} exists and is real, continuous,

and causal when

1. {R(s)} is analytic for Re[s]>0,
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2. {X(s)} is real for s real and positive, and

Y

3. 1X(s)} is order s ', where y>1, for s large in the right

half s plane.

. . . 1/
iX(s)} is analytic for Re[s]>0 when the branch cut of s " is chosen

‘ to lie along the negative, real axis in the s plane and the poles of
{X(s)}, which occur at
_ o m
s = An (164)

and do not appear in the right half s plane.*

{X(s)} is real for s real and positive. The only quantities appearing

in Equation 163 that can be complex are {¢n}, x_ and ms because D(s) and

n
1/ -

s '™ are real for s real and positive. When {¢n}, xn and m, are complex,
they occur in conjugate pairs. Note if in and {$n} are a homogeneous

solution to the equations of motion

J -
[ I 0A 10 = (0.} (130)
. L j°'n n
j=1
where Xn and {¢n} are complex, that their conjugates are homogeneous
solutions to the equations of motion.

J -— —
] =
[_Z [Aj]xn]{¢n} {0.} (165)
j=1
Equation 165 follows directly from the complex conjugate of Equation 130.
Since homogeneous solutions occur in conjugate pairs, the modal constant
m, occurs in conjugate pairs.

T, 9 . ~j-1
my = Lo LY deay TIA 1T (160)

j=1

*A pole in the right half s plane indicates that an RT or RTG model in
the equations of motion characterizes the viscoelastic material as
generating energy instead of dissipating energy.
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—_ J
moc e ML T

..373-1
n jeoan TLA1DMed (166)

j=1

It follows directly that when the terms in Equation 163 are complex, they
occur in complex conjugate pairs and {i(s)} is real for s real and
positive.

{X(s)} also satisfies the third and last condition placed on the
transform. To show that {X(s)} is order 5'2 for s large in the right
half s plane, one uses the transformed equations of motion as they
appear in Equation 97.

sZ[M1{X(s)} + ([K(s)1{X(s)} = {F(s)} (97)

The transformed equations of motion for simultaneous, unit impulsive
loading is
[sZ(M] + [X(s)IT(X(s)} = ({1.} (167)

The only terms in [K(s)], other than the constant terms, are those terms
proportional to u*(s) and x*(s) from the RT and/or RTG models of the
viscoelastic materials. The general forms of p*(s) and r*(s) appear in
Equation 62 for the RTG model and Equation 63 for the RT model. As a
direct result of the general forms of y*(s) and A*(s), Equation 167
reduces to

sZIMIIX(s)} = (1.} (168)

for s large. Since the elements in the mass matrix are constant, {X(s)}
must be order 5"2. Therefore, {X(s)} is order s'2 for s large in the
right half s plane.

Having now established that response of the structure to impulsive
loading, {x(t)},

x)y = L Mx(s) (169)
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exists and is real, continuous, and causal, the next issue to be
addressed is the calculation of the inverse transform, the topic of
the next sectior.

76
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SECTION X
CALCULATING THE RESPONSE TO IMPULSIVE LOADING

The final step in determining the impulse response of the structure
is to calculate the inverse transform of the Laplace transform of the
response to impulsive loading.

- A 1+ N T
(X(t)} = L l{X(s)} - -1 ) {¢n} {1.1D(s) (0.3 (170)
n=1 1/m - ) n’
mn(s -An
The inverse transform integral
_ n Y+i¢b ”
Llixesyy = - eStX(s)) ds (171)
Zrl y-ie

is evaluated using the residue theorem from the calculus of a complex
variable.

The closed contour of integration, used in conjunction with the
residue theorem, is given in Figure 18. The contour is divided into
six segments and the direction of integration along each segment is
indicated by the arrows. Segments 3, 4, and 5 of the contour are
required, because the branch cut and branch point of the function s m
are taken to be along the negative real axis and at the origin of the s

plane, respectively.

The residue theorem states that the integral along the closed contour,
divided by 2ni, is equal to the sum of the residues of the poles of the
poles of the integrand. In this case, the statement of the residue
theorem translates into

st

1 > 1
I;T I {X(S))e ds = - Z?Tk
1

e~ O

[ (X(s)e®t ds + Jb, (172)
2 j
k
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Figure 18.

Transform

The Contour of Integration Used to Evaluate the Inverse
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ISR A -

where the circled index indicates the contour over which the integration
is to be performed, and bj are the residues of the poles of {X(s)}
enclosed by the contour.

The integrals on the segments of the closed contour are evaluated
for the case where the length of segment 1 is extended indefinitely in
the positive and negative imaginary directions. ;

Y+ioa R

[ (X(s)1e®t ds X(s)1e®t ds (173)

1 y-ie

L}
—

and, as a result, Equation 171 becomes

+1
ytle, 1

1 st =
m£ . {X(S)}e ds = - mk

-100

N~

[ (X(s)1e%%ds + §b. (174)
2 5 )

k J
showing that one need evaluate the right side of Equation 174 to obtain
the inverse transform.

To maintain the continuity of the closed contour, the radii of
segments 2 and 6 are increased indefinitely, and segments 3 and 5 are
extended indefinitely in the negative real direction. When the radii
of contours 2 and 6 are increased indefinitely, it can be demonstrated
that the resulting value of the integrals along these two segments ;
js zero. This follows directly from the fact that, for large s, {i(s)}

is order 572, Hence, the pth component of {X(s)} is order ™2
. <,
Xl(s) v Is] »>> 1 (175)
s

Therefore, the asymptotic expression the integral on segment 2 as its ;
radius increases is a

i st
n €

Re
<, :;F ds (176)

" st
{ Xz(s)e ds ~ f o,

2 Re

79 ; '

patiniottoins ot AN




==

AFML-TR-79-4103

i Expressing s in polar notation, the relation is

. i
i . " Re "t :
[ X, (s)e%%as ~ [ ¢, S RiePde (177)
2 8, R%e

The magnitude of an integral is less than or equal to the maximum value
of the magnitude of the integrands, M, times the length of the path of
integration, L.

ide < M- L (178)

The maximum value of the magnitude of the integral is

R S e e

eglet
M = -——R-—— (]79)

and the length of the path of integration in radians is

T o P > ST

L = -8 (180)

The resulting bound for the magnitude of the integral is

e, le"t
M. L = ———;;——— (181)

which is clearly zero for finite time in the limit as R becomes large or
equivalently, in the limit as s becomes large. Since the magnitude of the
integral is zero, both the real and imaginary parts of the integral are
zero.

lim [ X(s)eStds = 0. + io0, (182)
R4
2
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The expression for the magnitude of the integral along segment 6 is

% eRelet ie
c, —— Re™"ide < M L
-7 2 i2e
R7e
and the proof that
lim | il(s)eStds = 0. + i0,
Row 6

follows the steps given in Equations 179 through 181.

(183)

(184)

The integral along segment 4 of the contour is evaluated for the case

where the radius of the contour shrinks to zero. The asymptotic

expression for the integrand, the Rth

small s is

(6.3741.)
n .

A N
X, (s) ~ 2 3

n=1 "51(-An)

|s] << 1

1] << |3

where e is the ch component of {¢n}, and

D(s) ~ 1.
Is] << 1
and
1 1
B YAR -
s A, (-An)
Is] << |a|
81

compaonent of Equation 163, for

(185)

(186)

(187)
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The asymptotic expression for the integral on segment 4 is

. N .
[ X (s)e®tds ) B4 e®fas
4 4 °° n n

5] << 1
51 << I3, (188)

In polar notation, where
s = pe'd (189)

the expression the integral on segment 4 is

T .
. N {¢n} {1.} pelet. ie

. st ] —————e ipe "de (190
f XE(S)e ds ~ { n=1 m(-3.) ( )
4 n

Again, the magnitude of the integral on segment 4 is less than or equal
to the maximum magnitude of the integrand, M, times the length of the
path of integration, L.

T .
- N {¢_} {1.} ise .
¥ ——5——7——— ef® tipelede < M- L (191)
=] .mn(-x )

™ n
n

The maximum magnitude of the integrand is

T
N (e }l{1.)
M = 2' S L epltl.p (192)
n=1 mn(-xn)

and the length of the path of integration is

L = 21 (193)
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The resuiting expression for the upper bound on the magnitude of the
integral on segment 4 is

N wn}Tu.}

| il(s)eStds < y — e,
4 = n=1 mn(-xn)
5] << 1
Is| << Ia | (194)

and clearly as p goes to zero, or equivalently as s goes to zero, the
upper bound on the magnitude of the integral goes to zero. Therefore,

lim [ X, (s)e**ds = 0. + i0. (195).
p-0 4

It has been demonstrated that the integrals on segments 2, 4, and 6
are zero, which reduces the expression for the inverse transform given
in Equation 174 to

yHie,

[ X(s)reStas = -1 T [ (X(s)1eStds + Tb. (196)
271 y-ie 2ni k=3,5 " j I

The inverse transform is seen to be the integrals along the branch cuts,
segments 3 and 5, plus the sum of the residues of the poles, b..

J
The expression for the integral along segment 3 is
R P . in .
] Xz(s)eStds = f Xz(re”)ere telmar (197)
3 R
where
s = re'” (198)
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This expression simplifies to
" st R. iny, -rt
/ X, (s)e”"ds = / Xz(re Je " Tdr (199)
3 P

In the 1imit as the radius of contour 2, R, goes to infinity and as the
radius of contour 4, p, goes to zero, the integral along segment 3
becomes
lim v st “e in, -1
p>0 [ X (s)e’"ds = | X, (re”"Je
Row 3 0

tar {200)

Similarly, the expression for the integral along segment 5 in the limit
as the radius of contour 6 goes to infinity and the radius of contour 4
goes to zero is

lim - ., -3 -

>0 [ X, (s)e®fds = - [ X (re’ Me Tfar  (201)

R+ 5 0

The sum of the integrals along segment 3 and segment 5 is

k_g ST R 0ettas T [ 0retT) - X (reTi My Thar (202)
-3,5 ')

Noting that RQ(re1n) and ig(re'lﬂ) are complex conjugates of each other,
the expression simplifies to

I [ X, (s)e®fds = - 2i Inf X,(re”*")e Tlar  (203)
k=3,5 k 0
The only terms in the inverse transform, (Equation 195), remaining to
be evaluated are the residues of the poles of ii(s)eSt.
the residues of the poles of )A(R(s)eSt are

By definition,

lim -
~ t
by e G e o
J

84
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or
lin Lo N oaTaones)
b, = S_A? (s - 23) n£1 7 ¢, € (205)
mn(s -An)
which reduces to
. . om T
11@ (s-2.) {¢j} {1.1D(s) st
by = s 17— 58 (206)
) (s m‘Aj) mj

Before taking the limit to evaluate the residue, it should be pointed

out that
Tm
Eir;il——— - 7 SRR (207)
m-) r=1
(s -2
which simplifies the expression for the residue to
y m . r/ {¢.17{1.1D(s) .
b, = ITm ) aPrlgl-im) T 6. et (208)
J s=A%" \r-13 m. it
J J
Evaluating the 1imit produces
) no1 (9 }T{l.}D(i’J’f‘) X'Jf‘t
. = mA, .. € (209)
J J m. JL

J

Having evaluated the residues of the poles of the integrand in
the inversion integral, the evaluation of the inverse transform
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is complete. The general expression for the displacement response of
the structure for simultaneous, unit, impulsive loading at all its
degrees of freedom is

Ql(t) N [f il(re-i")e-rtdr]
n 0
m 1 *m
{¢ } {1. }D(x ) ALt
) 0 454 (210)
j m

j

This expression is based on Equation 195, using Equations 181, 203, and
209 for the appropriate substitutions.

Note that the response of the structure has two parts, one part being
a sum of decaying sinusoids and the other part an integral that decreases
with increasing time. The integral does not decrease exponentially,
because it is asymptotic to t™* for large t, where o is greater than one.
Therefore, the integral dominates the response for a time long after the
loading. This component of the response describes the non-oscillatory
return of the structure to its unloadéd equilibrium position.

In summary, the response of the structure to impulsive loading can

be calculated using contour integration to evaluate the inverse transform.

Having obtained the response to impulsive Toading as a function of time
makes possible determination of the response of the structure to general
loading conditions using convolution. In essence, the calculation of the
response of the structure is no longer tied to the use of Laplace or
Fourier transforms. In other words, the response of the structure to
loading time histories for which transforms do not exist can be
calculated using the response to impulsive loading and the convolution
integral.
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SECTION XI
SUMMARY AND CONCLUSIONS

The generalized der.vative of fractional order is a mathematical
operator well-suited for describing the frequency-dependent mechanical
properties of viscoelastic materials. As shown in Section V and
Appendix C, the generalized derivative constitutive relations for the
materials are capable of describing the freguency-dependent stiffness
and damping of the materials over several decades of frequency, as
observed under conditions of sinusoidal motion.

Moreover, as demonstrated in Section V, the constitutive relation
for 3M-467 predicts accurately the non-periodic (transient) response of
the material as observed in the iaboratory. In addition, the generalized
derivative model for 3M-467 performed remarkably better than the Voigt
model .

The generalized derivative RT and RTG voscoelastic models enabled
the formulation of the viscostiffness matrix of the viscoelastic finite
element. This led to the successful formation of the equations of motion,
for a structure containing both elastic and viscoelastic components,
which can be decoupled and solutions obtained using modal analysis.
As demonstrated in Section VIII, the parameters of the solutions can be
determined using the iterative numerical schemes presented.

Finally, it was demonstrated that the response of the structure to
impulsive loading always exists and is continuous, real, and causal.
The general form of the response to impulsive loading was evaluated
using contour integration.

In conclusion, the approach to viscoelasticity resulting from this
investigation js particularly powerful, in that the general motion of a
structure having both elastic and viscoelastic components can be determined
given that two conditions are met. First, the RT and/or RTG models for
the viscoelastic materials in the structure must exist and comply with the
second law of thermodynamics as indicated in Appendix A. Second, every
component of the structure must have a suitable finite element approximation.
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APPENDIX A

THE RT AND RTG MODELS AND THE SECOND LAW
OF THERMODYNAMICS

The focus of the thermodynamic considerations centers on the ability
of the RT and RTG models of viscoelastic materials to satisfy the
second law of thermodynamics. In particular, the objective is to derive
constraints on the parameters of the RT and RTG models to ensure that
the state of stress and strain in the material predicted by the models
is consistent with the second law. The considerations are limited to
the case where the material is at a constant, uniform temperature and
the deformations and resulting stresses in the material are sinusoidal.

The assumption of constant, uniform temperature is motivated by the
observation that the moduli of viscoelastic materials are usually
strongly dependent on temperature. Allowing the temperature of the
material to vary, due to the energy dissipated during the deformation
process, implies that the parameters of the RT and/or RTG model should
be modified to account for the resulting changes in material properties.
However, the RT and RTG models are employed where the parameters of the
models are not changed during the deformation process, which is in
essence a statement that the temperature of material does not change
during deformation.

To implement the assumption of constant, uniform temperature, energy
sinks are assumed to be present at every point in the material. The
energy sinks instantaneously absorb all the dissipats? energy, preventing
the temperature from changing.

The energy sinks are represented in the first law of thermodynamics

pe = p + V-h + oq (A.1)

by q, the local rate of change of energy density through non-mechanical
effects. In this local form of the first law, V-h is the divergence of

the energy flux vector, p is the local rate at which internal work is
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done by mechanical means, ¢ is the internal energy per unit mass of the
material, and p is the mass density.

The following development, based solely on the first and second laws,
is an adaptation of the work of Coleman and Truesdell on the thermodynamics
of deformations for the specific case at hand (Reference 29). 1In
notation identical to Truesdell's, the second law for a material at
constant, uniform temperature is

pén - Veh - pq > 0 (A.2)

where n is the entropy per unit mass and 6 is temperature. This local
form of the second law is based on the Clausius-Planck inequality.

Two other entities relevant to the following discussion are the free
energy of the material, y,

v = € - nd (A.3)
and the internal dissipation rate, 6,

§ = p - p(nd - V) (A.4)
where the dots indicate first time derivatives. Substituting the
expression for the dissipation rate produces

§ = pén+ (p - oe) (A.5)
Using the first law to substitute for p - pe in Equation A.5 yields

§ = pon - V:h - pq (A.6)
From the second law and the above expression for the dissipation rate,
it is clear that the second law is always satisfied when
§ 20 (A.7)
In other words, when the local internal dissipation rate of a material is

non-negative, the behavior of the material is consistent with the second
law.*

*This result is contained in Coleman's general theorem on the non-
equilibrium thermodynamics of deformation (References 30, 32).
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The task remaining is to express the dissipation rate in terms of
the stresses and strains in the material. To that end, recall that the
energy sinks absorb all the dissipated energy.

§ = -pq (A.8)
In light of the expression for the dissipation rate given in Equation A.6,
-V.h + pon = 0 (A.9)

Since the absorption of the energy by the sinks prevents the opportunity
for energy conduction,

R = 0 (A.10)

and, as a result
v-h = 0 (A.11)

and consequently
n o= 0. (A.12)

Since the rate of change of the entropy, n, is zero, Equation A.5
reduces to

§ = (p - pe) . (A.13)

The internal dissipation rate can now be expressed in terms of stress
and strain, provided the internal energy per unit volume, pe, can be
expressed in terms of the rate of change of strain energy, u. The

internal energy per unit mass, e, is taken to be a function of temperature
plus the strain energy per unit mass, u/p.

e = f(o) + Y, (A.14)
For small strain the expression for one over density is

l/p(t) = -+ e(t))/po (A.15)

where o is the unstrained density and e(t) is the dilatation strain,

defined in Equation 38. The resulting expression for the internal energy
is

(]
J

£(6) + u-(1 + e(t))/o, (A.16)
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which simplifies to

e = f£(0) + Y, (A.17)

o

for small strain. Since the temperature is constant, the expression for
the strain energy rate is

€ = o (A.18)
and the resulting expression for the dissipation rate is
§ = (p - u) (A.19)
again, for the small strain.
The dissipation rate in terms of the stresses and strains is
s = (o(tNTLE(M)} - (o (t)1{e(e))) (A.20)
or
s = {{o(t)} - {o” ()N (A.21)

where {£(t)} is the column vector of the strain rates, {o(t)} is the
column vector of the stresses and {c"(t)} is the column vector of those
components of the stress acting to store and retrieve strain energy in
the material. As indicated in Section IV, the stresses storing and
retrieving strain energy for steady-state, sinusoidal motion were those
stresses in-phase with the strains. Consequently, the total stresses,
{c(t)}, minus the in-phase stresses, {o”(t)}, Teaves the out-of-phase
stresses, {o”7(t)}.

8 = fo7(t)} {e(t)} (A.22)
The stress out-of-phase with the strains

€nn (t) = emn°51nmot (64)
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are those stresses proportional to coswot in Equation 65

o“mn(t) = Gmnps(wo)eoCOSwot + F4(mo)emnoc05wot (A.23*%)

The dissipation rate in terms of the stresses and strains given above is

3 3
= 2c0s2 2
8 wyFz(w Jelcos?u t + 1 w Fylw )el

cos2w t (A.24)
n=1 m=1 °

n
(o]

[f the parameters of the RT and/or RTG models are chosen such that

v

woFS(wo) 0 (A.25)

\
o

moF4(mo) (A.26)
for all positive Wy the state of stress and strain in the material
predicted by the models is consistent with the second law.

Although the above development is for sinusoidal motion of the
material, its application extends to periodic strain histories. Consider
the case where the material undergoes prescribed, piece-wise continuous
and bounded strain history of finite duration and the material is allowed
sufficient time for the stresses to relax to their unloaded equilibrium
value of zero. Assume that at some later time the same strain histcry
is imposed on the material and the material again allowed to fully relax,
and this process of loading and relaxation is repeated continuously at a
spe:ified interval. The stress and strain histories of the material
are periodic and can be broken into their respective freguency components
using Fourier analysis. The internal dissipation of each frequency
component of the strain is given by tquation A.24 and satisfies the
second law, given that Equations A.25 and A.26 hold.

*F3(mo) and F4(mo) are functions of the parameters of the RT and RTG
models and are defined by Equations 67 and 70.
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Consequently, the periodic stress and strain histories of the material
comply with the second law. As a result, satisfying Equations A.25 and
A.26 is sufficient to ensure that the response of the material to a
piece-wise continuous and bounded strain history of finite duration
satisfies the second law. This follows from the observation that each
loading and relaxation cyclie of the material can be viewed as an
independent response sequence.
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APPENDIX B

A GENERALIZED DERIVATIVE RELATION FOR A
NEWTONIAN FLUID

By way of motivation toward describing the motion of physical systems
with generalized derivative equations, it is interesting to note that a
Newtonian fluid, defined by the stress-strain rate constitutive relation

. L,

o uoas (B.1)
where p is the bulk viscosity, can undergoe dynamic motion which lends
itself to description using a generalized derivative. When the Newtonian
constitutive relation is introduced into the one-dimensional momentum

equation for a homogeneous, incompressible fluid at uniform, constant

temperature
v g
b3t = 3% (8.2)
the resulting differential equation is
v a2v
PyT M (B.3)
3z2

This equation is immediately recognized as being in the form of the
one-dimensional diffusion equation. Donaldson (Reference 31) has
demonstrated that solutions of the one-dimensional diffusion equation
may be represented using fractional calculus. Of particular interest
at this point is the solution to the one-dimensional diffusion equation
that occurs when an infinite half-space of such a Newtonian fluid is
bounded by a "wetted" planar surface undergoing some known motion.*

[f the known motion of the bounding surface has a Laplace transform,
Laplace transforms may be used to solve the diffusion equation.

*This problem is a generalization of Stokes' second problem in which
Stokes assumed the motion of the "wetted" plate to be sinusoidal
(Reference 33).
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Figure B-1. Schematic of the Half Space of Newtonian Fluid Bounded
by a "Wetted" Surface
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A derivation of the solution is given here for completeness. Taking
the Laplace transform of Equation B.3 results in

_ 32V
p(sV(s,z) - v(0,2)) = — (s,z) (B.4)
9z
where V(s,z) is the transform of the velocity
_ -st
V(s,z) = [ v(t,z)e ~-dt (B.5)
0

Assuming the fluid is initially excited from a state of rest, the initial
velocity, v(0,z), is zero and the resulting differential equation is

psV(s,z) = éjil (s,z) (B.6)
322

The solution of this differential equation is readily seen to be

/25 e}
b f vz (B.7)

V(s,z) = A(s)e' + B(s)e

Choosing the coordinate system such that the normal of the bounding
surface is parallel to the negative 7 axis, one can proceed to determine
the functions A(s) and B(s) in terms of the boundary conditions. The
first boundary condition to be satisfied is that the magnitude of the
velocity of the fluid be bounded for large, negative Z. Consequently,
B(s) must be zero. The other boundary condition is that, at the interface
of the fluid and the bounding surface, the velocity of the fluid must be
equal to the velocity of the bounding surface, vo(t). To enforce this
boundary condition, one first takes the transform of vo(t)

t
v (s) = é vo(t)e‘S‘dt (B.8)

and the boundary condition is applied in the transform domain as shown

/85
V(s,z) = Afs)e™’ v : (B.9)
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V(s,0) = A(s) = V., (s) (8.10)

The resulting expression for the transform of the velocity of the fluid
at a distance z below the plate is

+ ps

V(s,z) = V_(s)e - (8.11)

At this point one wishes to determine the stresses in the fluid
according to the Newtonian constitutive relation (Equation B.1). The
transform of Equation B.1 is

3V (s,z)
9z

o*(s,z) = (B.12)

Substituting Equation B.11 into Equation B.12 for V(s,z) produces

o*(s,z) = vYup Vs V(s,z) (B.14)

The transform of the stress may be inverted by observing that the
transform is the product of the transforms of two known functions of time.

. sV(s,2) = JRRLl(r(m)t®) 1]

o=

o¥(s,z) = Yip

« LIv(t,z)] (.15)
Thus, the stress is seen to be the convolution of the two functions of
time,

/up. tov(t,2)

o(t,z) = :
r(x) 0 (t-+)

dt. (B.16)

For the zero initial condition on velocity, Equation B.16 is equivalent to

— t
o(t,z) = Ywe  d vit,z) g¢

—_— (B.17)
r(y) dt 0 (t-7)
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Notice that Equation B.17 states that the stress at any location in
the fluid is equal to a constant, Vip , times the generalized derivative
of fractional order % of the velocity of the fluid at that location.

o(t,z) = vus D [v(t,z)] (B.18)

This stress-velocity relation evaluated over an area A of the "wetted"
surface, z = 0, produces a force-velocity relation.

£(t,0) = A /up D® [v,(t)] (8.19)

Thus, we see that in this one case, the macroscopic behavior of a
Newtonian, viscous fluid is characterized by a generalized derivative of
fractional order %, even though the microscopic behavior is

o(t,z) = pe(t,z) (B.20)
This observation suggests that generalized derivatives may have

applications in other situations where a global, or discrete, description
is desired of a phenomenon which is locally viscous.
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APPENDIX €
RT AND RTG MODELS FOR VISCOELASTIC MATERIALS

Generalized derivative constitutive relations for three viscoelastic
materials are presented. The material properties on which the RT and RTG
models are based (Reference 34) were determined using the "temperature-
frequency superposition” principle (Reference 33).

The RTG model for the shear modulus of the viscoelastic material
3M-467 at 75°F is

-~ -~

81 01
(1 +bD Do(t) = (ug * wyD “)e(t) (c.1)
where
b1 = 8 x 10™" sec*S!? (c.2)
v, = 1.0 1b/in? (c.3)
Wy = 7.3 lb-sec'ss/in2 (c.4)
8, = .51 (c.5)
and
a, = .56 (C.6)
1

The mechanical properties predicted by the model are compared to the
material's properties in Figure C-1. Note the excellent agreement

between the model and the material properties over 8 decades of frequency.

The RT model for the viscoelastic Young's modulus of Sylgard 188 at
120°F is
*1
a(t) = (Eo + EID Ye(t) (C.7)
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where
Eo = 60 1b/in? {c.8)
2y
El = 43 1b-sec* /in? (c.9)
and
a; = .24 (c.10)

The mechanical properties predicted by the model are compared to the
material's properties in Figure C-2.

The RT model for the viscoelastic Young's modulus of BTR at 45°F is

%1 ®2
o(t) = (EID + E2D Je(t) (C.11)
where
095
E; = 850 1lb-sec’ /in? (Cc.12)
28 .
Ez = 18 1b-sec+ /in? {(C.13)
@y =  ,095 {C.14)
and
a, = .28 (C.15)

A comparison of the model and material properties is given in Figure C-3.

Although the agreement between the material properties and their
respective models is very good, not all viscoelastic materials lend
themselves to characterization by generalized derivatives models. The
materials most suited to modeling with generalized derivative
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constitutive relations are those that have properties such that the
following relation holds in the transition region:

n = tan 1% (C.16)

2

where n is the loss factor and o is the slope of the plot of the 1og]0
of the real part of the modulus plotted as a function of log]0 of the
frequency of motion.

In summary, generalized derivative constitutive relations do in fact
model the frequency dependent mechanical properties of at least three
viscoelastic materials. However, each model is of a different basic
form, as can be seen by comparing Equations C.1, C.7, and C.11. Hence,
the RT or RTG models are capable of describing viscoelastic materials
having distinctly different mechanical properties.

e i b o b e et
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Viscoelastic Young's Modulus - E“(w) - ]b/in2

Figure C-3.
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Loss Factor - n(w)

The Mechanical Properties of BTR Compared to the RT Model
of BTR
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